Extended high-frequency partial liquid ventilation in lung injury: gas exchange, injury quantification, and vapor loss.

نویسندگان

  • Allan Doctor
  • Eman Al-Khadra
  • Puay Tan
  • Kenneth F Watson
  • Diana L Diesen
  • Lisa J Workman
  • John E Thompson
  • Charles E Rose
  • John H Arnold
چکیده

High-frequency oscillatory ventilation with perflubron (PFB) reportedly improves pulmonary mechanics and gas exchange and attenuates lung injury. We explored PFB evaporative loss kinetics, intrapulmonary PFB distribution, and dosing strategies during 15 h of high-frequency oscillation (HFO)-partial liquid ventilation (PLV). After saline lavage lung injury, 15 swine were rescued with high-frequency oscillatory ventilation (n = 5), or in addition received 10 ml/kg PFB delivered to dependent lung [n = 5, PLV-compartmented (PLV(C))] or 10 ml/kg distributed uniformly within the lung [n = 5, PLV(U)]. In the PLV(C) group, PFB vapor loss was replaced. ANOVA revealed an unsustained improvement in oxygenation index in the PLV(U) group (P = 0.04); the reduction in oxygenation index correlated with PFB losses. Although tissue myeloperoxidase activity was reduced globally by HFO-PLV (P < 0.01) and regional lung injury scores (lung injury scores) in dependent lung were improved (P = 0.05), global lung injury scores were improved by HFO-PLV (P < 0.05) only in atelectasis, edema, and alveolar distension but not in cumulative score. In our model, markers of inflammation and lung injury were attenuated by HFO-PLV, and it appears that uniform intrapulmonary PFB distribution optimized gas exchange during HFO-PLV; additionally, monitoring PFB evaporative loss appears necessary to stabilize intrapulmonary PFB volume.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial liquid ventilation improves gas exchange and increases EELV in acute lung injury.

Gas exchange is improved during partial liquid ventilation with perfluorocarbon in animal models of acute lung injury. The specific mechanisms are unproved. We measured end-expiratory lung volume (EELV) by null-point body plethysmography in anesthetized sheep. Measurements of gas exchange and EELV were made before and after acute lung injury was induced with intravenous oleic acid to decrease E...

متن کامل

Effects of perfluorocarbon associated high frequency oscillatory ventilation on hemodynamics and gas exchange in the newborn piglets with respiratory distress.

We sought to know whether there is a further improvement in gas exchange when partial liquid ventilation (PLV) is added to high-frequency oscillatory ventilation (HFOV) in a piglet model of saline lavage-induced acute lung injury. Seven 7-9 day-old newborn piglets of mixed strain were treated with repeated saline lavage to achieve a uniform degree of acute lung injury. Then, HFOV were applied t...

متن کامل

Comparative effects of vaporized perfluorohexane and partial liquid ventilation in oleic acid-induced lung injury.

BACKGROUND It is currently not known whether vaporized perfluorohexane is superior to partial liquid ventilation (PLV) for therapy of acute lung injury. In this study, the authors compared the effects of both therapies in oleic acid-induced lung injury. METHODS Lung injury was induced in 30 anesthetized and mechanically ventilated pigs by means of central venous infusion of oleic acid. Animal...

متن کامل

[The impact of mechanical ventilation strategies that minimize atelectrauma in an experimental model of acute lung injury].

OBJECTIVE To evaluate whether ventilation strategies that target alveolar stabilization and prevention of atelectrauma would be associated with more favorable physiologic outcomes in a combined model of acute lung injury. METHODS Thirty-nine rabbits were instrumented and ventilated with FiO(2) of 1.0. Combined lung injury was induced by an infusion of lipopolysaccharide and tracheal saline la...

متن کامل

Partial liquid ventilation with perfluorocarbon improves gas exchange and decreases inflammatory response in oleic acid-induced lung injury in beagles.

The aim of this study was to determine the effect of partial liquid ventilation (PLV) using a perfluorocarbon (PFC) on gas exchange and lung inflammatory response in a canine acute lung injury model. After inducing severe lung injury by oleic acid infusion, beagle dogs were randomized to receive either gas ventilation only (control group, n = 6) or PLV (PLV group, n = 7) by sequential instillat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 95 3  شماره 

صفحات  -

تاریخ انتشار 2003